Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >
|
<< Назад | Оглавление | Далее >>
Допустим, у Дениса было $5$ конфет, мама дала ему еще $3$ конфеты, а папа — еще одну конфету. Сколько конфет стало у Дениса? Такая задача решается в два действия.
Первое: $5 + 3$ $=$ $8$ ). Столько конфет стало у Дениса после того, как он получил конфеты от мамы.
Второе: $8$ $+~1 = 9$. Столько конфет стало у Дениса в конечном итоге.
Это же самое решение можно представить в виде одной-единственной строчки. Поскольку « $8$ » было получено как « $5 + 3$ », то во втором равенстве « $8$ » можно заменить на « $5 + 3$ »:
До замены: |
$8$ |
$+~1 = 9$. |
После замены: |
( $5 + 3$ ) |
$+~1 = 9$. |
Новую вставку принято заключать в скобки. Таким образом, если в каком-нибудь длинном выражении встречаются скобки, это говорит о том, что в первую очередь следует выполнять действия внутри скобок. В нашем примере порядок выполнения действий таков:
[1] |
[2] |
|
( $5 + 3$ ) |
$+$ |
$1 =$ $8$ $+~1 = 9$. |
На этот раз оказалось, что действия выполняются в самом привычном порядке — слева направо. В этом особом случае скобки можно вообще не писать. Смысл выражения остается тем же самым:
[1] |
[2] |
|
$5 + 3$ |
$+$ |
$1 =$ $8$ $+~1 = 9$. |
Однако ту же самую задачу можно решить и по-другому.
Первое действие: $3 + 1$ $=$ $4$ . Столько конфет получил Денис от мамы и папы.
Второе действие: $5~+$ $4$ $= 9$. Столько конфет оказалось у Дениса.
В одну строку это записывается так:
|
[2] |
[1] |
|
$5$ |
$+$ |
( $3 + 1$ ) |
$= 5~+$ $4$ $= 9$. |
Итак, у нас есть два разных решения одной и той же задачи, и им соответствуют два разных выражения, но значения этих выражений одинаковы, поэтому
$5 + (3 + 1) = 5 + 3 + 1$.
Это равенство показывает, каким образом можно избавиться от скобок, или, выражаясь более грамотно, как можно раскрыть скобки. В данном примере скобки можно просто стереть, а все остальное оставить без изменений. Но так просто дело обстоит далеко не всегда.
Задача 2.2.1. У Дениса было $5$ конфет. $3$ конфеты он дал маме, и еще одну конфету — папе. Сколько конфет осталось у Дениса? Эту задачу требуется решить двумя способами, причем каждое решение записать в виде одного-единственного выражения.
Решение. Первый способ.
$5 - 3$ $=$ $2$ . Столько конфет осталось у Дениса, после того как он поделился конфетами с мамой.
$2$ $-~1 = 1$. Столько конфет осталось у Дениса в конце концов.
Записываем решение в виде одного выражения:
$5 - 3$ $-~1 =$ $2$ $-~1 = 1$.
Второй способ.
$3 + 1$ $=$ $4$ . Столько конфет Денис отдал маме и папе.
$5~-$ $4$ $= 1$. Столько конфет осталось у Дениса.
Объединяем решение в одно выражение:
$5~-$ ( $3 + 1$ ) $= 5~-$ $4$ $= 1$.
Сравнивая два решения, мы убеждаемся, что
$5 − (3 + 1) = 5 − 3 − 1$.
На этот раз, для того чтобы раскрыть скобки, недостаточно их просто стереть. Требуется еще и поменять знак «$+$» на знак «$-$».
Задача 2.2.2. У Дениса было $7$ конфет. Он решил поделиться конфетами с Матвеем. Он протянул Матвею $3$ конфеты, однако в последний момент передумал и одну конфету забрал обратно. Сколько конфет стало у Дениса?
Решение. Первый способ.
$7 - 3$ $=$ $4$ . Столько конфет оставалось у Дениса, когда он протянул конфеты Матвею.
$4$ $+~1 = 5$. Столько конфет стало у Дениса в конечном итоге.
Единое выражение:
$7 − 3$ $+~1 =$ $4$ $+~1 = 5$.
Второй способ.
$3 - 1$ $=$ $2$ . Столько конфет досталось Матвею.
$7 -$ $2$ $= 5$. Столько конфет стало у Дениса.
Единое выражение:
$7~-$ ( $3 - 1$ ) $= 7 -$ $2$ $= 3$.
Сравнивая два решения, получаем:
$7 - (3 - 1) = 7 - 3 + 1$.
И на этот раз одного только стирания скобок недостаточно. Нужно еще поменять знак «$-$», который стоял в скобках, на знак «$+$».
Задача 2.2.3. У Дениса было $5$ конфет. Мама подарила ему еще $3$ конфеты, из которых одну Денис дал папе. Сколько конфет стало у Дениса?
Рассуждая, как обычно, получаем:
$5 + (3 - 1) = 5 + 3 - 1$.
Здесь, как и в самый первый раз, нужно просто стереть скобки. Почему же иногда этого оказывается достаточно, а иногда нет? Выпишем все наши наблюдения еще раз:
$5 + (3 + 1) = 5 + 3 + 1$;
$5 + (3 - 1) = 5 + 3 - 1$;
$5 - (3 + 1) = 5 - 3 - 1$;
$5 - (3 - 1) = 5 - 3 + 1$.
Ага! Теперь всё ясно. Если перед скобкой стоит «$+$», то скобки можно просто стереть, и больше ничего делать не требуется. Но если перед скобкой стоит «$-$», то нужно еще поменять тот знак, который стоял внутри скобки. Сложение и вычитание в выражении без скобок выполняется в порядке слева направо.
Выражения, содержащие умножение или деление
Разумеется, в составных выражениях могут встречаться не только сложение и вычитание, но также и умножение и деление. Если, решая какую-нибудь задачу, мы составили выражение из двух действий и в этом выражении в первую очередь надо выполнить умножение или деление, а во вторую очередь — сложение или вычитание, то скобки можно не ставить:
$10 + (2 \cdot 3) = 10 + 2 \cdot 3 = 10 + 6$;
$10 + (6 / 2) = 10 + 6 / 2 = 10 - 3$;
$10 - (2 \cdot 3) = 10 - 2 \cdot 3 = 10 - 6$;
$10 - (6 / 2) = 10 - 6 / 2 = 10 - 3$.
Точно так же: $(2 \cdot 3) + 10 = 2 \cdot 3 + 10 = 6 + 10$
и т.п.
Напротив, для того чтобы сперва выполнялось сложение или вычитание, надо воспользоваться скобками:
${(10 + 2) \cdot 3 = 12 \cdot 3}$;
${3 \cdot (10 + 2) = 3 \cdot 12}$.
Замечание. Знак умножения «$\cdot$» перед скобкой обычно опускают, поэтому последнее равенство следовало бы переписать так:
${3 (10 + 2) = 3 \cdot 12}$.
Если же в выражении без скобок присутствуют только умножение и деление, то порядок действий — обычный, слева направо. Таково во всяком случае общее правило, с которым на практике мы будем иметь дело лишь в следующих двух случаях:
$(3 \cdot 4) \cdot 6 = 3 \cdot 4 \cdot 6$ (выражение содержит только умножение);
$(3 \cdot 4) / 6 = 3 \cdot 4 / 6$ (единственное деление находится в самом конце).
При этом мы будем избегать записей вида
$12 / 4 \cdot 3$ (деление предшествует умножению) и
$12 / 4 / 3$ (выражение содержит более одного деления),
предпочитая вместо этого явно выписывать скобки:
$(12 / 4) \cdot 3$;
$(12 / 4) / 3$.
Это поможет нам избежать путаницы в будущем, когда нам придется иметь дело с более сложными записями.
Разумеется, выражения могут состоять более чем из двух арифметических операций. Порядок действий в них определяется всё теми же тремя правилами:
1. Операции в скобках выполняются перед операциями вне скобок.
2. Умножение и деление выполняются перед сложением и вычитанием.
3. Операция, расположенная левее, выполняется перед операцией, расположенной правее.
Подразумевается, что мы обращаемся к правилу 2 лишь в том случае, когда не можем применить правило 1, а правило 3 вступает в силу только тогда, когда первых двух правил оказывается недостаточно.
Конспект
1. Порядок действий в составных выражениях определяется тремя правилами: (1) операции в скобках выполняются в первую очередь; (2) в отсутствии скобок умножение и деление выполняется перед сложением и вычитанием; (3) если первых двух правил оказывается недостаточно, операции выполняются слева направо.
2. Правило раскрытия скобок в выражениях, состоящих из сложения и вычитания. Если перед скобкой стоит знак «$+$», то скобку можно просто стереть. Если перед скобкой стоит знак «$-$», то, стерев скобку, нужно еще поменять те знаки, которые стояли внутри скобки. Например,
$5 + (3 - 1) = 5 + 3 - 1$;
$5 - (3 - 1) = 5 - 3 + 1$.
Примеры из «бесконечного» сборника типовых упражнений
Примеры на сложение и вычитание в два действия без скобок
Примеры на сложение и вычитание в два действия со скобками
Примеры в два действия, которые легко можно упростить изменением порядка действий
Примеры в два действия на сложение, вычитание, умножение и деление
<< Назад | Карта сайта | Главная | Далее >>
6•2-3(20:5)=